96 research outputs found

    Compton scattering of twisted light: angular distribution and polarization of scattered photons

    Full text link
    Compton scattering of twisted photons is investigated within a non-relativistic framework using first-order perturbation theory. We formulate the problem in the density matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light

    Caustic structures in the spectrum of x-ray Compton scattering off electrons driven by a short intense laser pulse

    Get PDF
    We study the Compton scattering of x-rays off electrons that are driven by a relativistically intense short optical laser pulse. The frequency spectrum of the laser-assisted Compton radiation shows a broad plateau in the vicinity of the laser-free Compton line due to a nonlinear mixing between x-ray and laser photons. Special emphasis is placed on how the shape of the short assisting laser pulse affects the spectrum of the scattered x-rays. In particular, we observe sharp peak structures in the plateau region, whose number and locations are highly sensitive to the laser pulse shape. These structures are interpreted as spectral caustics by using a semiclassical analysis of the laser-assisted QED matrix element

    Spectral caustics in laser assisted Breit-Wheeler process

    Get PDF
    Electron-positron pair production by the Breit-Wheeler process embedded in a strong laser pulse is analyzed. The transverse momentum spectrum displays prominent peaks which are interpreted as caustics, the positions of which are accessible by the stationary phases. Examples are given for the superposition of an XFEL beam with an optical high-intensity laser beam. Such a configuration is available, e.g., at LCLS at present and at European XFEL in near future. It requires a counter propagating probe photon beam with high energy which can be generated by synchronized inverse Compton backscattering

    Backreaction on background fields: A coherent state approach

    Get PDF
    There are many situations in which a strong electromagnetic field may be approximated as a fixed background. Going beyond this approximation, i.e. accounting for the back-reaction of quantum process on the field, is however challenging. Here we develop an approach to this problem which is a straightforward extension of background field methods. The approach follows from the observation that scattering in an on-shell background is equivalent to scattering between coherent states; we show that by deforming these states one can model back-reaction. Focussing on intense laser-matter interactions, we provide examples which model beam depletion and, furthermore, introduce an extremisation principle with which to determine the level of depletion in a given scattering process.Comment: 16 pages, 6 pdf figure
    corecore